DNA icon

Congenital Hypothyroidism (Central Hypothyroidism and Testicular Enlargement) via the IGSF1 Gene

Summary and Pricing

Test Method

Exome Sequencing with CNV Detection
Test Code Test Copy GenesTest CPT Code Gene CPT Codes Copy CPT Codes Base Price
IGSF1 81479 81479,81479 $990
Test Code Test Copy Genes Test CPT Code Gene CPT Codes Copy CPT Code Base Price
11389IGSF181479 81479,81479 $990 Order Options and Pricing

Pricing Comments

Our favored testing approach is exome based NextGen sequencing with CNV analysis. This will allow cost effective reflexing to PGxome or other exome based tests. However, if full gene Sanger sequencing is desired for STAT turnaround time, insurance, or other reasons, please see link below for Test Code, pricing, and turnaround time information. If the Sanger option is selected, CNV detection may be ordered through Test #600.

An additional 25% charge will be applied to STAT orders. STAT orders are prioritized throughout the testing process.

Click here for costs to reflex to whole PGxome (if original test is on PGxome Sequencing platform).

Click here for costs to reflex to whole PGnome (if original test is on PGnome Sequencing platform).

The Sanger Sequencing method for this test is NY State approved.

For Sanger Sequencing click here.

Turnaround Time

3 weeks on average for standard orders or 2 weeks on average for STAT orders.

Please note: Once the testing process begins, an Estimated Report Date (ERD) range will be displayed in the portal. This is the most accurate prediction of when your report will be complete and may differ from the average TAT published on our website. About 85% of our tests will be reported within or before the ERD range. We will notify you of significant delays or holds which will impact the ERD. Learn more about turnaround times here.

Targeted Testing

For ordering sequencing of targeted known variants, go to our Targeted Variants page.

EMAIL CONTACTS

Genetic Counselors

Geneticist

  • Greg Fischer, PhD

Clinical Features and Genetics

Clinical Features

Congenital hypothyroidism (CH) is the most common congenital endocrine disorder. It occurs in one of every 3,000-4,000 newborns and is twice as common in females as in males. Without early and adequate treatment, CH is characterized by growth failure, developmental delay, and permanent intellectual disability. Current newborn screening primarily detects the elevated thyroid stimulating hormone (TSH) level at birth in response to decreased or absent thyroid hormone production and can identify over 90% of CH cases. Most CH patients grow and develop normally after treatment with thyroxine (Park and Chatterjee 2005; Rose et al. 2006). CH is usually a sporadic disorder, but growing evidence confirms several genetic mechanisms together account for at least 5% of cases. The majority of CH cases (~80%) are due to developmental defects of the thyroid gland known as thyroid dysgenesis, including thyroid agenesis, hypoplasia, and ectopy. The remaining ~15% are caused by defects in one of the steps of thyroid hormone biosynthesis (thyroid dyshormonogenesis). Other less common causes are central hypothyroidism (impaired hypothalamic-pituitary-thyroid axis), thyroid hormone transporter defects, and thyroid hormone resistance (Peter and Muzsnai 2011; Nettore et al. 2013; Weber et al. 2013).

Genetics

IGSF1-related CH is an X-linked recessive disorder characterized by central hypothyroidism, testicular enlargement, and prolactin deficiency. IGSF1 is a membrane glycoprotein that is highly expressed in the anterior pituitary gland and testis. The function of IGSF1 is unknown (Tajima et al. 2014). Loss of IGSF1 function mutations were identified in both sporadic and familial male cases, including missense, nonsense variants, small deletions/insertions, and gross deletions (Sun et al. 2012; Nakamura et al, 2013). Central hypothyroidism was observed in about 25% of female heterozygous carriers (Sun et al. 2012).

Clinical Sensitivity - Sequencing with CNV PGxome

Congenital hypothyroidism (CH) is normally a sporadic disease, but in about 5% of cases a genetic cause has been demonstrated. Pathogenic variants in multiple genes from several molecular mechanisms are associated with CH (Peter and Muzsnai. 2011). Less than 20 pathogenic variants in the IGSF1 gene have been reported so far. The entire IGSF1 gene deletion was reported in two families (Sun et al. 2012).

Testing Strategy

This test provides full coverage of all coding exons of the IGSF1 gene plus 10 bases of flanking noncoding DNA in all available transcripts along with other non-coding regions in which pathogenic variants have been identified at PreventionGenetics or reported elsewhere. We define full coverage as >20X NGS reads or Sanger sequencing. PGnome panels typically provide slightly increased coverage over the PGxome equivalent. PGnome sequencing panels have the added benefit of additional analysis and reporting of deep intronic regions (where applicable).

Dependent on the sequencing backbone selected for this testing, discounted reflex testing to any other similar backbone-based test is available (i.e., PGxome panel to whole PGxome; PGnome panel to whole PGnome).

Indications for Test

Individuals with clinical symptoms consistent with hypothyroidism, low TSH levels, and absence of anti-thyroid antibodies.

Gene

Official Gene Symbol OMIM ID
IGSF1 300137
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT

Disease

Name Inheritance OMIM ID
Hypothyroidism, Central, and Testicular Enlargement XL 300888

Citations

  • Nakamura A, Bak B, Silander TLR, Lam J, Hotsubo T, Yorifuji T, Ishizu K, Bernard DJ, Tajima T. 2013. Three novel IGSF1 mutations in four Japanese patients with X-linked congenital central hypothyroidism. J. Clin. Endocrinol. Metab. 98: E1682–1691. PubMed ID: 23966245
  • Nettore IC, Cacace V, Fusco C De, Colao A, Macchia PE. 2013. The molecular causes of thyroid dysgenesis: a systematic review. J. Endocrinol. Invest. 36: 654–664. PubMed ID: 23698639
  • Park SM, Chatterjee VKK. 2005. Genetics of congenital hypothyroidism. J. Med. Genet. 42: 379–389. PubMed ID: 15863666
  • Péter F, Muzsnai A. 2011. Congenital disorders of the thyroid: hypo/hyper. Pediatr. Clin. North Am. 58: 1099–1115, ix. PubMed ID: 21981951
  • Rose SR, Brown RS, Foley T, Kaplowitz PB, Kaye CI, Sundararajan S, Varma SK, American Academy of Pediatrics; Section on Endocrinology and Committee on Genetics, American Thyroid Association; Public Health Committee, Lawson Wilkins Pediatric Endocrine Society. 2006. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics 117: 2290–2303. PubMed ID: 16740880
  • Sun Y, Bak B, Schoenmakers N, Trotsenburg ASP van, Oostdijk W, Voshol P, Cambridge E, White JK, Tissier P le, Gharavy SNM, Martinez-Barbera JP, Stokvis-Brantsma WH, Vulsma T, Kempers MJ, Persani L, Campi I, Bonomi M, Beck-Peccoz P, Zhu H, Davis TM, Hokken-Koelega AC, Del Blanco DG, Rangasami JJ, Ruivenkamp CA, Laros JF, Kriek M, Kant SG, Bosch CA, Biermasz NR, Appelman-Dijkstra NM, Corssmit EP, Hovens GC, Pereira AM, den Dunnen JT, Wade MG, Breuning MH, Hennekam RC, Chatterjee K, Dattani MT, Wit JM, Bernard DJ. 2012. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat. Genet. 44: 1375–1381. PubMed ID: 23143598
  • Tajima T, Nakamura A, Morikawa S, Ishizu K. 2014. Neonatal screening and a new cause of congenital central hypothyroidism. Ann Pediatr Endocrinol Metab 19: 117–121. PubMed ID: 25346914
  • Weber G, Rabbiosi S, Zamproni I, Fugazzola L. 2013. Genetic defects of hydrogen peroxide generation in the thyroid gland. J. Endocrinol. Invest. 36: 261–266. PubMed ID: 23404134

Ordering/Specimens

Ordering Options

We offer several options when ordering sequencing tests. For more information on these options, see our Ordering Instructions page. To view available options, click on the Order Options button within the test description.

myPrevent - Online Ordering

  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
  • PGnome sequencing panels can be ordered via the myPrevent portal only at this time.

Requisition Form

  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.

For Requisition Forms, visit our Forms page

If ordering a Duo or Trio test, the proband and all comparator samples are required to initiate testing. If we do not receive all required samples for the test ordered within 21 days, we will convert the order to the most effective testing strategy with the samples available. Prior authorization and/or billing in place may be impacted by a change in test code.


Specimen Types

Specimen Requirements and Shipping Details

PGxome (Exome) Sequencing Panel

PGnome (Genome) Sequencing Panel

loading Loading... ×

ORDER OPTIONS

An error has occurred while calculating the price. Please try again or contact us for assistance.

View Ordering Instructions

1) Select Test Method (Platform)


1) Select Test Type


2) Select Additional Test Options

No Additional Test Options are available for this test.

Note: acceptable specimen types are whole blood and DNA from whole blood only.
Total Price: loading
Patient Prompt Pay Price: loading
A patient prompt pay discount is available if payment is made by the patient and received prior to the time of reporting.
Show Patient Prompt Pay Price
×
Copy Text to Clipboard
×