Mitochondrial Complex I Deficiency via the NDUFS6 Gene
Summary and Pricing
Test Method
Exome Sequencing with CNV DetectionTest Code | Test Copy Genes | Test CPT Code | Gene CPT Codes Copy CPT Code | Base Price | |
---|---|---|---|---|---|
8899 | NDUFS6 | 81479 | 81479,81479 | $990 | Order Options and Pricing |
Pricing Comments
Our favored testing approach is exome based NextGen sequencing with CNV analysis. This will allow cost effective reflexing to PGxome or other exome based tests. However, if full gene Sanger sequencing is desired for STAT turnaround time, insurance, or other reasons, please see link below for Test Code, pricing, and turnaround time information.
An additional 25% charge will be applied to STAT orders. STAT orders are prioritized throughout the testing process.
Click here for costs to reflex to whole PGxome (if original test is on PGxome Sequencing platform).
Click here for costs to reflex to whole PGnome (if original test is on PGnome Sequencing platform).
The Sanger Sequencing method for this test is NY State approved.
For Sanger Sequencing click here.Turnaround Time
3 weeks on average for standard orders or 2 weeks on average for STAT orders.
Please note: Once the testing process begins, an Estimated Report Date (ERD) range will be displayed in the portal. This is the most accurate prediction of when your report will be complete and may differ from the average TAT published on our website. About 85% of our tests will be reported within or before the ERD range. We will notify you of significant delays or holds which will impact the ERD. Learn more about turnaround times here.
Targeted Testing
For ordering sequencing of targeted known variants, go to our Targeted Variants page.
Clinical Features and Genetics
Clinical Features
Mitochondrial complex I (CI) deficiency is characterized by a primary deficiency of the first and largest oxidative phosphorylation complex (Fassone and Rahman 2012). Primary mitochondrial CI deficiency accounts for roughly one-third of all oxidative phosphorylation disorders and is the most frequently reported childhood-onset mitochondrial disease (Skladal et al. 2003; Scaglia et al. 2004).
The majority of CI-deficient patients present within the first year of life (Distelmaier et al. 2009). Respiratory infections, gastrointestinal disease, or long periods of fasting may trigger the initial symptoms of this disorder and stimulate additional episodes, leading to rapid deterioration of the patient’s condition. Similar to other OXPHOS disorders, recurrent lactic acidosis is a prevalent finding in patients with CI deficiency. Additional clinical symptoms, which can involve single or multiple organ systems, may be highly heterogeneous. The most common clinical presentations in patients with nuclear-encoded CI deficiency include Leigh/Leigh-like syndrome (LS/LLS), leukoencephalopathy with macrocephaly, fatal infantile lactic acidosis, hypertrophic cardiomyopathy, and hepatopathy with renal tubulopathy (Fassone and Rahman 2012; Distelmaier et al. 2009). LS is a severe, progressive encephalopathy characterized by psychomotor delay or regression, isolated or combined mitochondrial complex deficiencies, elevated levels of lactate in the blood and/or cerebral spinal fluid, bilateral symmetrical lesions in the brainstem and basal ganglia, and neurologic manifestations such as hypotonia or ataxia (Rahman and Thorburn 2015; Lake et al. 2015).
In the majority of reported patients with NDUFS6-associated mitochondrial CI deficiency, affected individuals were diagnosed with severe neonatal or infantile-onset lactic acidosis (Kirby et al. 2004; Haack et al. 2012; Spiegel et al. 2009; Pronicka et al. 2016). Additional symptoms included hypotonia, nystagmus, and/or seizures.
Genetics
The mitochondrial respiratory chain complex I (nicotinamide adenine dinucleotide (NADH):ubiquinone oxidoreductase) is composed of at least 45 structural subunits (Fassone and Rahman 2012). 38 of these subunits are encoded by nuclear DNA, and 7 (MT-ND1, MT-ND2, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, and MT-ND6) are encoded by mitochondrial DNA. The resulting holoenzyme complex plays a critical role in redox-driven proton translocation, which ultimately results in synthesis of adenosine triphosphate (ATP). Due to the many structural and accessory subunits required to support the assembly and function of complex I, mitochondrial CI deficiency is a genetically heterogeneous disorder. At least 33 genes have been linked to this disease to date.
NDUFS6-associated mitochondrial complex I deficiency is inherited in an autosomal recessive pattern. The NDUFS6 gene encodes for a zinc-binding subunit of the mitochondrial CI (Kmita et al. 2015). Six pathogenic variants have been reported in this gene to date: one missense variant, one nonsense variant, one splicing variant, one small deletion, one small indel, and one large deletion (Human Gene Mutation Database).
Clinical Sensitivity - Sequencing with CNV PGxome
At this time, due to the limited number of reported cases, the clinical sensitivity of NDUFS6-related mitochondrial complex I deficiency is difficult to estimate.
Testing Strategy
This test provides full coverage of all coding exons of the NDUFS6 gene plus 10 bases of flanking noncoding DNA in all available transcripts along with other non-coding regions in which pathogenic variants have been identified at PreventionGenetics or reported elsewhere. We define full coverage as >20X NGS reads or Sanger sequencing. PGnome panels typically provide slightly increased coverage over the PGxome equivalent. PGnome sequencing panels have the added benefit of additional analysis and reporting of deep intronic regions (where applicable).
Dependent on the sequencing backbone selected for this testing, discounted reflex testing to any other similar backbone-based test is available (i.e., PGxome panel to whole PGxome; PGnome panel to whole PGnome).
Indications for Test
NDUFS6 sequencing should be considered for patients who present with symptoms consistent with mitochondrial complex I (CI) deficiency or for individuals with a family history of mitochondrial CI deficiency. We will also sequence the NDUFS6 gene to determine carrier status.
NDUFS6 sequencing should be considered for patients who present with symptoms consistent with mitochondrial complex I (CI) deficiency or for individuals with a family history of mitochondrial CI deficiency. We will also sequence the NDUFS6 gene to determine carrier status.
Gene
Official Gene Symbol | OMIM ID |
---|---|
NDUFS6 | 603848 |
Inheritance | Abbreviation |
---|---|
Autosomal Dominant | AD |
Autosomal Recessive | AR |
X-Linked | XL |
Mitochondrial | MT |
Disease
Name | Inheritance | OMIM ID |
---|---|---|
Mitochondrial Complex I Deficiency | AR | 252010 |
Related Tests
Citations
- Distelmaier F. et al. 2009. Brain. 132:833-42. PubMed ID: 19336460
- Fassone and Rahman. 2012. PubMed ID: 22972949
- Haack T.B. et al. 2012. Journal of Medical Genetics. 49:83-9. PubMed ID: 22200994
- Human Gene Mutation Database (Bio-base).
- Kirby D.M. et al. 2004. Journal of Clinical Investigation. 114:837-45. PubMed ID: 15372108
- Kmita K. et al. 2015. Proceedings of the National Academy of Sciences U S A. 112:5685-90. PubMed ID: 25902503
- Lake et al. 2015. PubMed ID: 25978847
- Pronicka E. et al. 2016. Journal of Translational Medicine. 14:174. PubMed ID: 27290639
- Rahman and Thorburn. 2015. PubMed ID: 26425749
- Scaglia et al. 2004. PubMed ID: 15466086
- Skladal et al. 2003. PubMed ID: 12805096
- Spiegel R. et al. 2009. European Journal of Human Genetics. 17:1200-3. PubMed ID: 19259137
Ordering/Specimens
Ordering Options
We offer several options when ordering sequencing tests. For more information on these options, see our Ordering Instructions page. To view available options, click on the Order Options button within the test description.
myPrevent - Online Ordering
- The test can be added to your online orders in the Summary and Pricing section.
- Once the test has been added log in to myPrevent to fill out an online requisition form.
- PGnome sequencing panels can be ordered via the myPrevent portal only at this time.
Requisition Form
- A completed requisition form must accompany all specimens.
- Billing information along with specimen and shipping instructions are within the requisition form.
- All testing must be ordered by a qualified healthcare provider.
For Requisition Forms, visit our Forms page
If ordering a Duo or Trio test, the proband and all comparator samples are required to initiate testing. If we do not receive all required samples for the test ordered within 21 days, we will convert the order to the most effective testing strategy with the samples available. Prior authorization and/or billing in place may be impacted by a change in test code.
Specimen Types
Specimen Requirements and Shipping Details
PGxome (Exome) Sequencing Panel
PGnome (Genome) Sequencing Panel
ORDER OPTIONS
View Ordering Instructions1) Select Test Type
2) Select Additional Test Options
No Additional Test Options are available for this test.