Familial Dysautonomia via the ELP1/IKBKAP Gene - Full Gene
Summary and Pricing
Test Method
Sequencing and CNV Detection via NextGen Sequencing using PG-Select Capture ProbesTest Code | Test Copy Genes | Test CPT Code | Gene CPT Codes Copy CPT Code | Base Price | |
---|---|---|---|---|---|
4941 | ELP1 | 81479 | 81479,81479 | $990 | Order Options and Pricing |
Pricing Comments
Testing run on PG-select capture probes includes CNV analysis for the gene(s) on the panel but does not permit the optional add on of exome-wide CNV analysis. Any of the NGS platforms allow reflex to other clinically relevant genes, up to whole exome or whole genome sequencing depending upon the base platform selected for the initial test.
An additional 25% charge will be applied to STAT orders. STAT orders are prioritized throughout the testing process.
This test is also offered via a custom panel (click here) on our exome or genome backbone which permits the optional add on of exome-wide CNV or genome-wide SV analysis.
Turnaround Time
3 weeks on average for standard orders or 2 weeks on average for STAT orders.
Please note: Once the testing process begins, an Estimated Report Date (ERD) range will be displayed in the portal. This is the most accurate prediction of when your report will be complete and may differ from the average TAT published on our website. About 85% of our tests will be reported within or before the ERD range. We will notify you of significant delays or holds which will impact the ERD. Learn more about turnaround times here.
Targeted Testing
For ordering sequencing of targeted known variants, go to our Targeted Variants page.
Clinical Features and Genetics
Clinical Features
Familial dysautonomia (FD), also known as Riley–Day syndrome and hereditary sensory autonomic neuropathy type III, is characterized by hypotonia, gastrointestinal dysfunction, vomiting crises, recurrent pneumonia, altered sensitivity to pain, taste and temperature perception, absence of fungiform papillae on the tongue, decreased or absent deep tendon reflexes, absence of overflow tears, and cardiovascular instability (Shohat and Halpern 2010). These congenital symptoms result from the abnormal development and survival of the sensory and autonomic systems, which leads to progressive neurological abnormalities. FD almost exclusively occurs in individuals with Ashkenazi Jewish (AJ) ancestry. Penetrance is complete, although there is variable expressivity (Axelrod 2005). The incidence of FD among individuals with AJ heritage is 1:3600 births, and has an estimated carrier frequency of 1/30. Someone who is not of AJ ancestry has a carrier risk of less than 1:150 (Slaugenhaupt et al. 2001).
Genetics
FD is inherited in an autosomal recessive manner. It is caused by pathogenic variants in the ELP1/IKBKAP gene, which encodes a component of the Elongator complex. The complex allows for permissive chromatin structure for efficient mRNA elongation during transcription (Shohat and Halpern 2010). Two pathogenic variants account for more than 99% of affected individuals. (1) The c.2204+6T>C variant is a founder mutation that is responsible for disease in individuals with AJ heritage. It causes skipping of exon 20 resulting in a truncated IKAP protein (Dietrich et al. 2011). The abnormal transcript is tissue specific, as the abnormal transcript is found in the brain but not in lymphoblasts and fibroblasts (Slaugenhaupt et al. 2001). (2) The c.2087G>C (p.Arg696Pro) variant has been reported in the AJ population but is not as common as the intronic variant, and has not been reported in the homozygous state. Another variant c.2741C>T (p.Pro914Leu) has been reported in an individual with FD who inherited the variant from a non-AJ parent along with the common pathogenic variant from their AJ parent (Leyne et al. 2003). The missense variants appear to disrupt phosphorylation (Gold-von Simson and Axelrod 2006).
Clinical Sensitivity - Sequencing with CNV PG-Select
This sequencing test will identify all previously reported pathogenic variants in the ELP1/IKBKAP gene, and examine the remaining gene sequence to identify any other unreported pathogenic variants.
Testing Strategy
This test provides full coverage of all coding exons of the ELP1/IKBKAP gene, plus ~10 bases of flanking noncoding DNA. We define full coverage as >20X NGS reads or Sanger sequencing.
Indications for Test
Candidates for this test are patients clinically diagnosed with Familial Dysautonomia or carrier testing in family members. This test is specifically designed for heritable germline mutations.
Candidates for this test are patients clinically diagnosed with Familial Dysautonomia or carrier testing in family members. This test is specifically designed for heritable germline mutations.
Gene
Official Gene Symbol | OMIM ID |
---|---|
ELP1 | 603722 |
Inheritance | Abbreviation |
---|---|
Autosomal Dominant | AD |
Autosomal Recessive | AR |
X-Linked | XL |
Mitochondrial | MT |
Disease
Name | Inheritance | OMIM ID |
---|---|---|
Familial Dysautonomia | AR | 223900 |
Related Tests
Name |
---|
Familial Dysautonomia via the ELP1/IKBKAP Gene - Targeted Variants Analysis |
Hereditary Sensory and Autonomic Neuropathy Panel |
Citations
- Axelrod FB. 2005. Familial dysautonomia: a review of the current pharmacological treatments. Expert Opin Pharmacother 6: 561–567. PubMed ID: 15934882
- Dietrich P, Yue J, E. S, Dragatsis I. 2011. Deletion of Exon 20 of the Familial Dysautonomia Gene Ikbkap in Mice Causes Developmental Delay, Cardiovascular Defects, and Early Embryonic Lethality. PLoS ONE 6: e27015. PubMed ID: 22046433
- Gold-von Simson G, Axelrod FB. 2006. Familial Dysautonomia: Update and Recent Advances. Current Problems in Pediatric and Adolescent Health Care 36: 218–237. PubMed ID: 16777588
- Leyne M, Mull J, Gill SP, Cuajungco MP, Oddoux C, Blumenfeld A, Maayan C, Gusella JF, Axelrod FB, Slaugenhaupt SA. 2003. Identification of the first non-Jewish mutation in familial Dysautonomia. American Journal of Medical Genetics 118A: 305–308. PubMed ID: 12687659
- Shohat M, Halpern GJ. 1993. Familial Dysautonomia. In: Pagon RA, Adam MP, Bird TD, Dolan CR, Fong C-T, and Stephens K, editors. GeneReviews™, Seattle (WA): University of Washington, Seattle,. PubMed ID: 20301359
- Slaugenhaupt SA, Blumenfeld A, Gill SP, Leyne M, Mull J, Cuajungco MP, Liebert CB, Chadwick B, Idelson M, Reznik L. 2001. Tissue-Specific Expression of a Splicing Mutation in the IKBKAP Gene Causes Familial Dysautonomia. The American Journal of Human Genetics 68: 598–605. PubMed ID: 11179008
Ordering/Specimens
Ordering Options
We offer several options when ordering sequencing tests. For more information on these options, see our Ordering Instructions page. To view available options, click on the Order Options button within the test description.
myPrevent - Online Ordering
- The test can be added to your online orders in the Summary and Pricing section.
- Once the test has been added log in to myPrevent to fill out an online requisition form.
- PGnome sequencing panels can be ordered via the myPrevent portal only at this time.
Requisition Form
- A completed requisition form must accompany all specimens.
- Billing information along with specimen and shipping instructions are within the requisition form.
- All testing must be ordered by a qualified healthcare provider.
For Requisition Forms, visit our Forms page
If ordering a Duo or Trio test, the proband and all comparator samples are required to initiate testing. If we do not receive all required samples for the test ordered within 21 days, we will convert the order to the most effective testing strategy with the samples available. Prior authorization and/or billing in place may be impacted by a change in test code.
Specimen Types
ORDER OPTIONS
View Ordering Instructions1) Select Test Type
2) Select Additional Test Options
No Additional Test Options are available for this test.