DNA icon

Xeroderma Pigmentosum via the ERCC4 Gene

Summary and Pricing

Test Method

Exome Sequencing with CNV Detection
Test Code Test Copy GenesTest CPT Code Gene CPT Codes Copy CPT Codes Base Price
ERCC4 81479 81479,81479 $990
Test Code Test Copy Genes Test CPT Code Gene CPT Codes Copy CPT Code Base Price
11293ERCC481479 81479,81479 $990 Order Options and Pricing

Pricing Comments

Our favored testing approach is exome based NextGen sequencing with CNV analysis. This will allow cost effective reflexing to PGxome or other exome based tests. However, if full gene Sanger sequencing is desired for STAT turnaround time, insurance, or other reasons, please see link below for Test Code, pricing, and turnaround time information. If the Sanger option is selected, CNV detection may be ordered through Test #600.

An additional 25% charge will be applied to STAT orders. STAT orders are prioritized throughout the testing process.

Click here for costs to reflex to whole PGxome (if original test is on PGxome Sequencing platform).

Click here for costs to reflex to whole PGnome (if original test is on PGnome Sequencing platform).

The Sanger Sequencing method for this test is NY State approved.

For Sanger Sequencing click here.

Turnaround Time

3 weeks on average for standard orders or 2 weeks on average for STAT orders.

Please note: Once the testing process begins, an Estimated Report Date (ERD) range will be displayed in the portal. This is the most accurate prediction of when your report will be complete and may differ from the average TAT published on our website. About 85% of our tests will be reported within or before the ERD range. We will notify you of significant delays or holds which will impact the ERD. Learn more about turnaround times here.

Targeted Testing

For ordering sequencing of targeted known variants, go to our Targeted Variants page.

EMAIL CONTACTS

Genetic Counselors

Geneticist

  • Stela Berisha, PhD, FACMG

Clinical Features and Genetics

Clinical Features

Xeroderma pigmentosum (XP) results in skin changes (blistering due to sunburn in 60% of cases, persistent erythema, freckling, and hyper/hypopigmentation), early onset skin cancers and internal cancers, ocular problems (severe keratitis, eyelid atrophy, and conjunctival inflammatory masses), and neurologic abnormalities (microcephaly, diminished/absent deep tendon stretch reflexes, progressive sensorineural hearing loss, and cognitive impairment) (Kraemer et al. 2016. PubMed ID: 20301571). The types of cancers involved are usually non-melanoma skin cancers (basal and squamous cell) and cutaneous melanoma. The incidence of skin cancer is 1,000 times the rate of the general population (Webb et al. 2008. PubMed ID: 18292171). Sun exposure must be limited because skin cancer can appear within the first decade of life due to ultraviolet radiation; removal of early pre-cancerous lesions is beneficial. XP occurs in approximately 1 in 250,000 live births in the United States, 2.3 in 1,000,000 live births in Western Europe (Kleijer et al. 2008. PubMed ID: 18329345), and a higher prevalence of 1 in 22,000 live births in Japan (Hirai et al. 2006. PubMed ID: 16905156). Increased rates are also seen in North Africa, and the Middle East, possibly due to increased consanguinity. XP presents with complete penetrance and shows a wide variety of clinical heterogeneity within and between XP groups. This may be due to length of sunlight exposure, complementation group, nature of the pathogenic variant and unknown factors (Lehmann et al. 2011. PubMed ID: 22044607).

Genetics

Xeroderma pigmentosum is an autosomal recessive disorder caused by biallelic pathogenic variants in the XPA, ERCC3, XPC, ERCC2, DDB2, ERCC1 & ERCC4, and ERCC5 genes, which belong to the XPA, XPB, XPC, XPD, XPE, XPF, and XPG complementation groups respectively (DiGiovanna et al. 2012. PubMed ID: 22217736). The products of these genes are involved in DNA repair, specifically nucleotide excision repair (NER). This type of repair is involved in removing UV-induced dipyrimidine photoproducts and chemical crosslinks. If the damage is left unchecked cells have the potential for cancer development. The XP variant phenotype which is caused by POLH variants leads to affected individuals who have an increased skin cancer incidence and eye abnormalities like most XP patients. Cells with POLH variants do not have dysfunctional nucleotide excision repair. Specific genotype-phenotype correlations exist for the XP forms (Kraemer et al. 2016. PubMed ID: 20301571).

The XPC and DDB2 (XPE) protein products are required for initial damage detection. Afterwards, the products XPB and XPD open up DNA around the photoproduct. XPA verifies correct protein assembly and then the XPG and XPF nucleases cleave the DNA on either side of the damage for correct repair via the DNA polymerase η (encoded by POLH) (Naegeli et al. 2011. PubMed ID: 21684221; Kraemer et al. 2016. PubMed ID: 20301571). XPF and ERCC1 form a heterodimeric structure-specific endonuclease which is necessary for 5’ cleavage of UV-damaged DNA at the incision step of NER (Kashiyama et al. 2013. PubMed ID: 23623389). Two types of NER are performed within the cell, namely, global genome repair and transcription coupled repair. The former is involved in global genome maintenance, whereas the latter is involved in repair of DNA from transcriptionally active genes. All aforementioned protein products are involved in transcription-coupled repair and most of these gene products are also involved with global genome repair, with the exception of XPC and XPE. Interestingly, patients with XPC or XPE/ DDB2 variants do not have severe sunlight lesions and neurological abnormalities, and this may have to do with their type of NER pathway involvement. The majority of XPF patients have mild symptoms including sun sensitivity, skin freckling and adult-onset basal or squamous cell carcinoma (Gregg et al. 2011. PubMed ID: 21612988).

ERCC4 codes for a 103-kd protein of 905 amino acids. The ECRR4 protein product forms a complex with ERCC1 and is involved in the 5’ incision that is made during nucleotide excision repair (Kraemer et al. 2016. PubMed ID: 20301571). Individuals with pathogenic variants in ERCC4 have been reported with Fanconi anemia and XP/Cockayne syndrome phenotype (Bogliolo et al. 2013. PubMed ID: 23623386; Kashiyama et al. 2013. PubMed ID: 23623389). To date, the majority of pathogenic variants reported in ERCC4 are missense and small frameshift deletions, with a small number of nonsense and splice variants (Fassihi et al. 2016. PubMed ID: 26884178; Human Gene Mutation Database).

Clinical Sensitivity - Sequencing with CNV PGxome

Pathogenic variants in ERCC4 account for 3% of xeroderma pigmentosum cases in Europe and 7% in Japan (Kraemer et al. 2016. PubMed ID: 20301571).

Testing Strategy

This test provides full coverage of all coding exons of the ERCC4 gene plus 10 bases of flanking noncoding DNA in all available transcripts along with other non-coding regions in which pathogenic variants have been identified at PreventionGenetics or reported elsewhere. We define full coverage as >20X NGS reads or Sanger sequencing. PGnome panels typically provide slightly increased coverage over the PGxome equivalent. PGnome sequencing panels have the added benefit of additional analysis and reporting of deep intronic regions (where applicable).

Dependent on the sequencing backbone selected for this testing, discounted reflex testing to any other similar backbone-based test is available (i.e., PGxome panel to whole PGxome; PGnome panel to whole PGnome).

Indications for Test

Individuals with a clinical presentation of XP. Earlier diagnosis may improve patient prognosis through regular screening and treatment for early-onset malignancies. This test may also be considered for the reproductive partners of individuals who carry pathogenic variants in ERCC4. This test is specifically designed for heritable germline variants and is not appropriate for the detection of somatic variants in tumor tissue.

Gene

Official Gene Symbol OMIM ID
ERCC4 133520
Inheritance Abbreviation
Autosomal Dominant AD
Autosomal Recessive AR
X-Linked XL
Mitochondrial MT

Citations

  • Bogliolo et al. 2013. PubMed ID: 23623386
  • DiGiovanna et al. 2012. PubMed ID: 22217736
  • Fassihi et al. 2016. PubMed ID: 26884178
  • Gregg et al. 2011. PubMed ID: 21612988
  • Hirai et al. 2006. PubMed ID: 16905156
  • Human Gene Mutation Database (Biobase).
  • Kashiyama et al. 2013. PubMed ID: 23623389
  • Kleijer et al. 2008. PubMed ID: 18329345
  • Kraemer et al. 2016. PubMed ID: 20301571
  • Lehmann et al. 2011. PubMed ID: 22044607
  • Naegeli et al. 2011. PubMed ID: 21684221
  • Webb et al. 2008. PubMed ID: 18292171

Ordering/Specimens

Ordering Options

We offer several options when ordering sequencing tests. For more information on these options, see our Ordering Instructions page. To view available options, click on the Order Options button within the test description.

myPrevent - Online Ordering

  • The test can be added to your online orders in the Summary and Pricing section.
  • Once the test has been added log in to myPrevent to fill out an online requisition form.
  • PGnome sequencing panels can be ordered via the myPrevent portal only at this time.

Requisition Form

  • A completed requisition form must accompany all specimens.
  • Billing information along with specimen and shipping instructions are within the requisition form.
  • All testing must be ordered by a qualified healthcare provider.

For Requisition Forms, visit our Forms page

If ordering a Duo or Trio test, the proband and all comparator samples are required to initiate testing. If we do not receive all required samples for the test ordered within 21 days, we will convert the order to the most effective testing strategy with the samples available. Prior authorization and/or billing in place may be impacted by a change in test code.


Specimen Types

Specimen Requirements and Shipping Details

PGxome (Exome) Sequencing Panel

PGnome (Genome) Sequencing Panel

loading Loading... ×

ORDER OPTIONS

An error has occurred while calculating the price. Please try again or contact us for assistance.

View Ordering Instructions

1) Select Test Method (Platform)


1) Select Test Type


2) Select Additional Test Options

No Additional Test Options are available for this test.

Note: acceptable specimen types are whole blood and DNA from whole blood only.
Total Price: loading
Patient Prompt Pay Price: loading
A patient prompt pay discount is available if payment is made by the patient and received prior to the time of reporting.
Show Patient Prompt Pay Price
×
Copy Text to Clipboard
×